Low-distance Surface Codes under Realistic Quantum Noise

نویسندگان

  • Yu Tomita
  • Krysta Marie Svore
چکیده

We study the performance of distance-three surface code layouts under realistic multi-parameter noise models. We first calculate their thresholds under depolarizing noise. We then compare a Pauli-twirl approximation of amplitude and phase damping to amplitude and phase damping. We find the approximate channel results in a pessimistic estimate of the logical error rate, indicating the realistic threshold may be higher than previously estimated. From Monte-Carlo simulations, we identify experimental parameters for which these layouts admit reliable computation. Due to its low resource cost and superior performance, we conclude that the 17-qubit layout should be targeted in early experimental implementations of the surface code. We find that architectures with gate times in the 5–40 ns range and T1 times of at least 1–2 μs will exhibit improved logical error rates with a 17-qubit surface code encoding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Grassmannian Packings From Operator Reed-Muller Codes

This paper introduces multidimensional generalizations of binary Reed–Muller codes where the codewords are projection operators, and the corresponding subspaces are widely separated with respect to the chordal distance on Grassmannian space. Parameters of these Grassmannian packings are derived and a low complexity decoding algorithm is developed by modifying standard decoding algorithms for bi...

متن کامل

Quantum Error Correction and Fault Tolerant Quantum Computing

e?cient fault-tolerant quantum computing arxiv fault-tolerant quantum computing crcnetbase an introduction to quantum error correction and fault quantum error correction and fault tolerant quantum computing fault tolerance in quantum computation eceu fault-tolerant quantum computation world scientific fault -tolerant quantum computation versus realistic noise quantum error correction and fault-...

متن کامل

A Generalized Pre-Processor for Block and Convolutionally Coded Signals

The concept of a generalized data pre-processor for preliminary estimates of block and convolutionally encoded symbols is described and evaluated. Preliminary data estimates are envisioned to have application in removing binary phase-shift-keyed (BPSK) modulated data from the received carrier prior to phase estimation, particularly in low signal-to-noise ratio (SNR) environments where squaring ...

متن کامل

On Cayley Graphs, Surface Codes, and the Limits of Homological Coding for Quantum Error Correction

We review constructions of quantum surface codes and give an alternative, algebraic, construction of the known classes of surface codes that have fixed rate and growing minimum distance. This construction borrows from Margulis’s family of Cayley graphs with large girths, and highlights the analogy between quantum surface codes and cycle codes of graphs in the classical case. We also attempt a b...

متن کامل

One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes

We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1404.3747  شماره 

صفحات  -

تاریخ انتشار 2014